Data Governance in Self-Service BI: Managing Risks Without Data Gatekeepers
Self-service BI is more efficient and reliable when you have a robust data governance framework to streamline and standardize the process. Here, we’ll discuss how data governance in self-service BI helps with risk management. Business intelligence is a collection of processes that convert raw data into actionable insights. A traditional BI setup is highly technical and requires data analysts, data scientists, statistical analysts, and BI experts with relevant skills and knowledge. This team manages the processes and shares the insights with other employees to help them make data-driven decisions. However, there’s a branch of business intelligence that has simplified the process for non-technical employees and end users. This is known as self-service BI. According to The Business Research Company, the self-service BI market was $10.02 billion in 2024 and is expected to grow at a CAGR (Compound Annual Growth Rate) of 17.3% to reach $22.42 billion by 2029. Self-service BI tools enable users to sort, analyze, derive insights, and generate data visualizations without requiring extensive technical expertise. Be it frontline employees or executives, they don’t have to contact the tech team with queries and wait for the insights/ reports to be sent. With self-service BI, they can perform the activity on their own and make data-driven decisions. While this made self-service BI popular across industries, it also led to certain challenges and issues, especially with data management and governance. That’s because self-service BI also requires BI consultants to work on the backend and ensure that the data quality is as it should be to derive accurate insights. In this blog, we explore the challenges of self-service BI and how data governance plays a crucial role in managing risks when data gatekeepers step back. Challenges without Data Governance in Self-Service BI The major challenges of using self-service BI deal with data. While most businesses know the importance of data in deriving insights, not many have a clear picture of how to handle data or ways to ensure its quality, compliance, etc. This results in a mismatch of expectations and outcomes. It turns self-service BI into a frustrating tool, resulting in employees sending emails to the BI with their queries and requests. Data Inconsistency and Trust Issues It’s no surprise that a business has vast amounts of data to deal with. Transactional data, data from social media and websites, data brought by stakeholders, customer data, etc., are all important and should be used for analytics. However, this raw data has duplicates, incomplete information, and other errors. Ensuring data consistency is a big challenge as low-quality data can result in incorrect insights. Complexity Instead of Simplification The market has several BI tools with extensive features and capabilities. Vendors promise flexibility, interactive features, and access to numerous data visualizations. While these sound great in theory, the practical application can be confusing and overwhelming. Which visualization should an employee use for which report? What happens if the wrong type of graph or chart is created? BI risk management is also about ensuring that the customized dashboards don’t complicate things when they should be simplifying the process. Report Sprawl Interactive dashboards are easy to use. Hence, employees can generate reports with a couple of clicks. Over time, this results in too many reports created by employees from across the organization. Quality, relevance, and accuracy can take a backseat without a proper understanding of why these reports are generated and how they are used. Repot sprawl leads to confusion and miscommunication, which can result in wrong decisions. Lack of Standardization Consistency in how your employees use self-service BI tools is vital for a business to be efficient and achieve its goals. This requires standardization of processes – the data used for insights, the types of reports generated, the validation process, when to use data-driven analytics, etc. This is more of a strategic plan than a series of operations or actions. A business cannot afford for each employee to follow a different standard or process when making data-driven decisions. Absence of Governance Data governance has to be a priority, but some businesses ignore it. When you don’t manage data and the analytics process with a proper framework, it can complicate the operations, lead to unverified reports, and may even attract lawsuits from outsiders or stakeholders due to various reasons. Data governance is not optional. It is mandatory even for self-service BI. That’s why many enterprises hire business intelligence consulting services to add a robust governance layer to their data-driven models. What is Data Governance? We mentioned data governance a few times. What does it actually mean? Data governance is a collection of principles, practices, and tools that help manage the data assets of a business throughout the lifecycle. Aligning data requirements with business vision, mission, objectives, and strategy is important for seamless data management. It also includes data security and data compliance, where the data used for analytics is safe from unauthorized access and adheres to the global data privacy regulations, like GDPR, CCPA, etc. The data governance framework empowers you to leverage your data assets to unlock their true potential and derive meaningful and accurate insights for proactive decision-making. From optimizing resources to reducing costs, increasing efficiency, and standardizing processes, data governance plays a crucial role in protecting your organization’s data and reputation. How Data Governance Helps Manage Risks in Self-Service BI Data governance is the solution to managing risks and challenges of using self-service BI tools in your business. Third-party and offshore BI consultants can help implement data governance practices. Clear and Measurable Goals The easiest way to complicate things is to be vague and directionless. You need clear and measurable goals when implementing business intelligence in your organization. The same applies to building the data governance framework. In fact, your goals and strategies should be aligned at all times to get the expected results. Be specific about the outcomes you expect, such as reducing the request rate by a certain percentage, increasing meaningful dashboard activity by X times, and so on. Make data compliance
Read More